skip to main content


Search for: All records

Creators/Authors contains: "Lin, Chung‐Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, USGWD comprises over 14.2 million well records with attributes, such as well purpose, location, depth, and capacity, for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States.

     
    more » « less
  2. Abstract

    The rise in smart water technologies has introduced new cybersecurity vulnerabilities for water infrastructures. However, the implications of cyber‐physical attacks on the systems like urban drainage systems remain underexplored. This research delves into this gap, introducing a method to quantify flood risks in the face of cyber‐physical threats. We apply this approach to a smart stormwater system—a real‐time controlled network of pond‐conduit configurations, fitted with water level detectors and gate regulators. Our focus is on a specific cyber‐physical threat: false data injection (FDI). In FDI attacks, adversaries introduce deceptive data that mimics legitimate system noises, evading detection. Our risk assessment incorporates factors like sensor noises and weather prediction uncertainties. Findings reveal that FDIs can amplify flood risks by feeding the control system false data, leading to erroneous outflow directives. Notably, FDI attacks can reshape flood risk dynamics across different storm intensities, accentuating flood risks during less severe but more frequent storms. This study offers valuable insights for strategizing investments in smart stormwater systems, keeping cyber‐physical threats in perspective. Furthermore, our risk quantification method can be extended to other water system networks, such as irrigation channels and multi‐reservoir systems, aiding in cyber‐defense planning.

     
    more » « less